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The spin relaxation-time T1 in zinc-blende GaN quantum dot is investigated for different magnetic field, well
width, and quantum dot diameter. The spin relaxation caused by the two most important spin-relaxation
mechanisms in zinc-blende semiconductor quantum dots, i.e., the electron-phonon scattering in conjunction
with the Dresselhaus spin-orbit coupling and the second-order process of the hyperfine interaction combined
with the electron-phonon scattering, are systematically studied. The relative importance of the two mechanisms
are compared in detail under different conditions. It is found that due to the small spin-orbit coupling in GaN,
the spin relaxation caused by the second-order process of the hyperfine interaction combined with the electron-
phonon scattering plays much more important role than it does in the quantum dot with narrower band gap and
larger spin-orbit coupling, such as GaAs and InAs.

DOI: 10.1103/PhysRevB.79.155309 PACS number�s�: 73.21.La, 71.70.Ej, 85.75.�d

I. INTRODUCTION

The wide-band-gap group III nitride semiconductor GaN
has emerged as a leading material for a variety of new
devices,1,2 ranging from the blue laser3,4 to high-power elec-
tronic devices,5 by utilizing its electronic and optical proper-
ties. Recently the magnetic properties of GaN-based nano-
structures have also attracted much attention, due to the
potential application in spintronic device.6 Understanding the
carrier spin-relaxation mechanism in GaN is of great impor-
tance in the design and the realization of GaN-based spin
device. So far, much effort has been devoted to the experi-
mental study of the spin relaxation in different GaN struc-
tures, including GaN epilayers,7–10 GaN quantum wells,11–13

and GaN quantum dots �QDs�.14 Most of these works focus
on the spin lifetime in the hexagonal wurtzite GaN struc-
tures, which are easier to grow than the cubic structures.
However, the spin-orbit coupling �SOC� in wurtzite GaN
structure is much larger than that of cubic GaN due to the
strong built-in electric field caused by the spontaneous and
piezoelectric polarizations.15,16 The electron/exciton spin
lifetime of different wurtzite GaN nanostructures ranges
from a few to a few hundred picoseconds while the exciton
spin-relaxation time is of nanoseconds for the cubic GaN
epilayer10 and is even longer in cubic GaN QD.14 On the
theoretical side, spin-relaxation times of electron and hole in
bulk cubic GaN are calculated and are found to be two or
three orders of magnitude longer than those in GaAs.17,18

However, the electron-spin properties in cubic GaN QDs are
less well understood and many questions, such as what the
dominant spin-relaxation mechanism is, remain open. In this
paper, we will systematically study the electron-spin relax-
ation in cubic GaN QD under different conditions.

There are many spin-relaxation mechanisms in QDs.19–24

In cubic semiconductor QDs, the most important two mecha-
nisms are: �1� the electron-phonon scattering in conjunction
with the SOC and �2� the second-order process of the hyper-
fine interaction combined with the electron-phonon

scattering.22–24 In GaAs QD, it was shown that the first
mechanism is the dominant spin-relaxation mechanism for
quite wide range of parameters due to the large SOC.23 Since
the SOC in GaN is much smaller than that of GaAs, which of
these two mechanisms dominates spin relaxation need to be
further examined.

We organize the paper as following: in Sec. II we set up
the model and give the Hamiltonian. The two most important
electron-spin relaxation mechanisms are discussed and the
formula of the corresponding spin-relaxation rates are pre-
sented. We then calculate the spin-relaxation rates of a QD
embedded in a narrow quantum well analytically using per-
turbation theory in Sec. III. We further present the exact
spin-relaxation rates under different conditions by numerical
method in Sec. IV and summarize in Sec. V.

II. MODEL AND SPIN RELAXATION RATE

We consider one-electron spin in a single GaN QD em-
bedded in a quantum well with well width a. A magnetic
field B is applied. The Hamiltonian of the system composed
of the electron and the lattice is given by

HT = He + HL + HeL, �1�

where He, HL, and HeL are the Hamiltonians of the electron,
the lattice, and their interaction, respectively. The electron
Hamiltonian He can be written as

He = H0 + HSO = � P2

2m�
+ Vc�x,y� + Vz�z� + HZ� + HSO,

�2�

where H0 is the Hamiltonian without the SOC, m� is the
electron effective mass, and P=−i�� + e

cA is the kinetic mo-
mentum with A=B�r. Vz�z� is the quantum well confine-
ment. In this paper, it is assumed to be a hard wall confine-
ment with width a. Vc�x ,y�= 1

2m��0
2�x2+y2� is the in-plane
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confinement of QD with diameter d0=��� /m��0. HZ

= 1
2g�BB ·� is the Zeeman energy with g, �B, and � being

the g factor of electron, Bohr magneton and Pauli matrix,
respectively. Hso is the Hamiltonian of the SOC. In cubic
GaN the dominant SOC term is Dresselhaus term,25 which
reads26

Hso =
1

�3�0��PyPxPy − PzPxPz��x + �PzPyPz − PxPyPx��y

+ �PxPzPx − PyPzPy��z� , �3�

with �0 being the Dresselhaus coefficient. The eigenwave-
function ��	 and the eigenenergy 	���=1,2 ,¯� of He can be
obtained from the perturbation theory or from the exact di-
agonalization method,21 using the eigenstates of H0 as basis.
The Hamiltonian of the lattice is consisted of two parts: HL
=Hph+Hnuclei. Hph=
q
��q
aq


† aq
 represents the Hamil-
tonian of the phonons with �q
 standing for the phonon en-
ergy spectrum of branch 
 and momentum q and aq


† /aq


being the corresponding phonon creation/annihilation opera-
tor. Hnuclei=
 j�IB ·I j is the Zeeman term of the lattice
nuclear spins in the external magnetic field with �I and I j
denoting the gyro-magnetic ratio and spin of jth nucleus,
respectively. The interaction between the electron and the
lattice also has two parts: HeL=Hep+HeI. Hep is the electron-
phonon scattering and is given by Hep=
q
Mq
�aq


+a−q

† �eiq·r, where Mq
 is the matrix element of the electron-

phonon interaction. �Mqsl�2=��2q /2�vsl for the electron-
phonon coupling due to the deformation potential. For the
piezoelectric coupling, �Mqpl�2= �32��2e2e14

2 /2�vsl�
���3qxqyqz�2 /q7� for the longitudinal phonon mode
and 
 j=1,2�Mqptj

�2= �32��2e2e14
2 / �2�vstq

5���qx
2qy

2+qy
2qz

2

+qz
2qx

2− �3qxqyqz�2 /q2� for the two transverse modes. Here �
stands for the acoustic deformation potential; � is the GaAs
volume density; e14 is the piezoelectric constant and  de-
notes the static dielectric constant. The acoustic phonon-
spectra �ql=vslq for the longitudinal mode and �qt=vstq for
the transverse modes with vsl and vst representing the corre-
sponding sound velocities. HeI is the electron-nucleus hyper-
fine interaction HeI, which can be written as HeI
=
 jAv0S ·I j��r−R j�, where v0 is the volume of the unit cell
of the lattice, S is the spin of the electron, r and R j are the
position of the electron, and the jth nucleus, respectively. A
stands for the hyperfine interaction coupling constant.

In the Hamiltonian �Eq. �1��, we only include the terms
related to the two dominant spin-relaxation mechanisms.
One is the electron-phonon scattering in conjunction with the
Dresselhaus SOC. The SOC mixes the spin-up and spin-
down states to form the majority spin-up and spin-down
states. The direct coupling to the phonon causes the transi-
tion between the majority spin-up and spin-down states and
results in the spin relaxation. The transfer-matrix element is
Mq
. This spin mechanism will be referred to as “Mecha-
nism I” hereafter. The other is the second-order process of
the hyperfine interaction combined with the electron-phonon
interaction in which not only the SOC mixes the spin-up and
spin-down states, but also the nuclei flip the electron spin. As
the phonon compensates the energy difference, this mecha-
nism also leads to spin relaxation. In the following, it is

called “Mechanism II.” The transfer matrix between states
��1	 and ��2	 of Mechanism II can be written as

VeI−ph = ��2	� 

m��1

��2�Hep�m	�m�HeI��1	
	�1

− 	m

+ 

m��2

��2�HeI�m	�m�Hep��1	
	�2

− 	m
���1�

= 

q


Mq
�aq
 + a−q

† � , �4�

with

Mq
 = ��2	� 

m��1

��2�Mq
eiq·r�m	�m�HeI��1	
	�1

− 	m

+ 

m��2

��2�HeI�m	�m�Mq
eiq·r��1	
	�2

− 	m
���1� , �5�

where the summation of �m	 runs over all possible interme-
diate states.

To calculate the spin-relaxation time, one can use the per-
turbative approach based on the calculation of the transition
rates from Fermi’s golden rule.19–21,24,27 Nonperturbative cal-
culation using equation of motion method has also been pro-
posed to study the spin relaxation of the system with large
SOC at high-temperature regime.23,24 For the system with
weak SOC at low-temperature regime, these two approaches
produce the same results. In the cubic GaN QD, since the
SOC is pretty weak,28 the perturbative approach gives suffi-
cient accurate spin-relaxation rate and is therefore adopted in
the present work.

Using the Fermi’s golden rule, one can obtain the spin-
relaxation rate as23

T1
−1 = 


if

�f i+�i+→f− + f i−�i−→f+� . �6�

Here f i� is the Maxwell distribution since we study the spin
relaxation of single electron confined in the QD. “+ /−” stand
for the states with the majority up/down-spin. The scattering
rate �i→f reads

�i→f =
2�

�


q


��f �Xq
�i	�2�nq
��	 f − 	i − ��q
�

+ �nq
 + 1���	 f − 	i + ��q
�� , �7�

where Xq
=Mq
eiq·r and Xq
=Mq
 for Mechanisms I and
II, respectively. nq
 is the Bose distribution function for
phonons.

III. ANALYTICAL RESULTS

Before presenting the full exact diagonalization result, let
us first look at the analytical result of the spin-relaxation rate
of a QD embedded in a narrow quantum well by perturba-
tively solving the electron Hamiltonian �Eq. �2�� to the sec-
ond order of the SOC.

Due to the symmetry of the QD in the x-y plane, B can be
assumed to be �B� ,0 ,B�� with B� =B sin � and B�=B cos �
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being the components along the x axis and z axis, and �
representing the angle between the magnetic field direction
and the z axis. The eigenstate of the electron Hamiltonian
without the SOC �H0� �nznl�	 is characterized by the quan-
tum number of quantum well confinement, radial, angular,
and spin freedoms nz�=1,2 ,¯�, n�=0,1 ,¯�, l�=0, �1,¯�,
and ��=�1�, respectively, whose energy is Enznl�=

nz
2�2�2

2m�a2

+ �2n+ �l�+1���+ l��B�
+�EB, with �=��0

2+�B�

2 , �B

=eB� / �2m��, and EB= 1
2g�BB. In the narrow quantum well

�d0�a�, the distance of different nz states is so large that
only the lowest nz state is relevant. Under this approxima-
tion, the spin-orbit coupling can be expressed as Hso

= 1
��0�� /a�2�−Px�x+ Py�y�. Up to the first-order perturba-

tion, the lowest two eigenstates of the electron with the SOC
are

��1	 = �001	 + B011,001
1,+ �011	 − B01−1,001

3,+ �01 − 1	

+ B0−11,001
1,− �0 − 11	 + B0−1−1,001

2,− �0 − 1 − 1	 ,

��2	 = �00 − 1	 + B011,00−1
2,+ �011	 − B01−1,00−1

1,+ �01 − 1	

− B0−11,00−1
3,− �0 − 11	 − B0−1−1,00−1

1,− �0 − 1 − 1	 , �8�

where Bnl�,n�l���
1,� = i 1

2��c��1��B�
/��sin � / �Enl�−En�l����,

Bnl�,n�l���
2,� = i 1

2 ��c� �1 � �B�
/�� �1 + cos �� / �Enl� − En�l����,

and Bnl�,n�l���
3,� = i 1

2��c� �1��B�
/���1− cos �� / �Enl�

−En�l����. The corresponding eigenenergies of these states
read

	1 = E001 + �B011,001
1,+ �2�E011 − E001� − �B01−1,001

3,+ �2�E01−1 − E001�

+ �B0−11,001
1,− �2�E0−11 − E001� + �B0−1−1,001

2,− �2�E0−1−1 − E001� ,

	2 = E00−1 + �B011,00−1
2,+ �2�E011 − E00−1�

− �B01−1,00−1
1,+ �2�E01−1 − E00−1�

− �B0−11,00−1
3,− �2�E0−11 − E00−1�

− �B0−1−1,00−1
1,− �2�E0−1−1 − E00−1� . �9�

It is noted that in the above equations, we have included the
second-order correction of the SOC on the energy, which is
crucial to the study of the spin relaxation using perturbation
method as pointed out by Cheng et al.21 It is also noted that
the state index nz is dropped in the above equations since it is
always 1 in the narrow quantum well approximation. ��1	 and
��2	 are the lowest majority spin-up and spin-down states,
respectively. At the low-temperature regime, the electron
mainly distributes on these two states. Therefore, T1 basi-
cally equals the spin-relaxation time between these two
states. It is further noted that at low-temperature regime, the
main electron-phonon scattering comes from the electron
coupling to the transverse phonon via piezoelectric field.
With these approximations, the spin-relaxation rate due to
Mechanism I is given by

�1 = c�2nq + 1��q
0

�/2

d�� sin3 ���sin4 �� + 8 cos4 ���

�e−q2 sin2 ��/2I2�1

2
qa� cos ���

��2P1
2 + �P2

2 + P3
2 − 2P1

2�
1

4
q2 sin2 ��

+ �P4
2 + P5

2 + 2P1
2�

1

16
q4 sin4 ��� , �10�

where c=�e2e14
2 / ��Dvst

2 2�, q=�E / ��vst�� with �E= �	2
−	1�, and �=�m�� /�. I�x�=�2 sin�x� / �x��−x���+x��
denotes the form factor along z direction due to the quantum
well confinement. In the above equation, P1=A1+A2−A3
−A4 with A1= �B011,001

1,+ B011,00−1
2,+ �, A2= �B01−1,001

3,+ B01−1,00−1
1,+ �,

A3= �B0−11,001
1,− B0−11,00−1

3,− �, and A4= �B0−1−1,001
2,− B0−1−1,00−1

1,− �;
P2=−�B011,00−1

2,+ �+ �B0−11,00−1
3,− �− �B01−1,001

3,+ �+ �B0−1−1,001
2,− �; P3=

−�B011,00−1
2,+ �− �B0−11,00−1

3,− �+ �B01−1,001
3,+ �+ �B0−1−1,001

2,− �, P4=C1−C2
+C3−C4, P5=C1−C2−C3+C4 with C1= �B011,001

1,− B0−11,00−1
3,+ �,

C2= �B01−1,001
1,− B0−1−1,00−1

3,+ �, C3= �B0−11,001
1,− B011,00−1

2,+ �, and C4
= �B0−1−1,001

1,− B01−1,00−1
2,+ �. Using the material parameters of GaN

QD and in consideration of the relative small magnetic field,
one can write down the spin-relaxation rate due to this
mechanism at zero temperature for relative small dot,

�1 � a−4d0
8B5�1 + cos2 �� , �11�

which indicates that for fixed magnetic field magnitude, the
spin relaxation under the perpendicular magnetic field is two
times of that under the parallel magnetic filed. It should be
noted that for �=0 case �the magnetic field is along the z
axis�, to the leading term, the magnetic field dependence of
�1 obtained here is in accordance with that obtained in Refs.
19 and 20. By assuming that the nuclei spins are independent
to each other and are in equilibrium state, the spin relaxation
between ��1	 and ��2	 induced by Mechanism II, with the
mediation of the lowest available state, can be written as

�2 = � A

	2 − 	3
�2

I�I + 1�v0�3a−1c�2nq + 1�q3

� 
0

�/2

d�� sin5 ���sin4 �� + 8 cos4 ���

� e−q2 sin2 ��/2I2�1

2
qa� cos ��� , �12�

which at zero temperature gives

�2 � c3a−1d0
4B3. �13�

The ratio of the spin relaxations due to these two mecha-
nisms is therefore

�1/�2 � a−3d0
4B2, �14�

which gives a guideline to determine which mechanism is
more important at different conditions. It is therefore ex-
pected that Mechanism II is more important for smaller QD
embedded in the wider quantum well under weaker magnetic
field.
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IV. NUMERICAL RESULTS

The perturbation method gives qualitative results for us to
understand the overall behavior of spin relaxation in GaN
under different conditions. However, in the perturbation cal-
culation, states with higher energy are dropped to get a man-
ageable analytical result. It should be noted that, for the spin
relaxation caused by Mechanism II, the contributions of
higher intermediate states and the lowest one are of the same
order with regard to hyperfine-interaction strength. More-
over, for QD embedded in wider quantum wells, contribution
of the higher nz states to the spin-orbit coupling cannot be
neglected. It is expected that for d0�a, the spin relaxation
due to Mechanism I can be different from the perturbative
results. It is therefore necessary to check the accuracy of the
perturbative calculation by comparing to the exact diagonal-
ization with sufficient basis functions included.

In Fig. 1, we present the spin-relaxation rates as functions
of well width in GaN QD under different conditions obtained
by the exact diagonalization and perturbation. The material
parameters of GaN are listed in Table I.29–32 The Dresselhaus
coefficient �0 is chosen to be 0.51 Å3·eV according to the
latest calculation.28 It is seen that the perturbation results
describe the qualitative behavior of the spin relaxation pretty
well. For the cases we study here, the spin relaxation caused
by the electron-phonon scattering in conjunction with the
SOC from the perturbation is very close to the exact diago-
nalization result in narrow quantum well. When the well

width becomes larger, the difference between perturbative
and exact diagonalization result also grows as contribution of
the higher nz states becomes more and more important. On
the other hand, for the spin relaxation caused by the hyper-
fine interaction together with electron-phonon interaction,
the difference between perturbative and exact diagonaliza-
tion results almost does not change with the well width. For
this mechanism, the relaxation rate from exact diagonaliza-
tion method is always about one order of magnitude higher
than that obtained from the perturbation calculation for the
cases we study. This indicates the contribution of the higher
states are important to the quantitative calculation of the spin
relaxation. In the following, we only present the results of
exact diagonalization unless otherwise specified. We now fo-
cus on how the spin relaxation induced by the two mecha-
nisms change with a. It is seen that the spin relaxations in-
duced by the two mechanisms both decrease with a. The spin
relaxation due to Mechanism I decreases much faster than
that due to Mechanism II. As a result, Mechanism II be-
comes more and more important when the quantum well
width increases. This can be understood from the perturba-
tion result. As one can see from Eqs. �11� and �13� that the
relaxation rate �1 decreases with a as a−4, while �2 is pro-
portional to a−1. We then pay attention to the relative impor-
tance of these two mechanisms. For the vertical-magnetic-
field case in Fig. 1�a�, for B=5 T, spin relaxation due to
Mechanism I is always the dominant spin-relaxation mecha-
nism. When B decreases to 0.5 T, Mechanism II almost
dominates the spin relaxation except at very small well width
�a�4 nm�. For the parallel-magnetic-field case in Fig. 1�b�,
Mechanism II is even more important and dominates the spin
relaxation for a�6 nm and �2.5 nm when B=5 T and 0.5
T, respectively. This is quite different from the cubic materi-
als with narrower band gap and larger SOC such as GaAs, in
which the spin relaxation due to Mechanism I is usually 2–3
orders of magnitude stronger than that due to Mechanism II.
But thanks to the small SOC, the spin relaxation caused by
the nuclei plays a much more important role in GaN QD. It is
also worth noting that the hyperfine interaction and the SOC
can also cause spin dephasing. Previous studies on GaAs QD
have shown that the hyperfine interaction usually dominates
the spin dephasing at low temperature.23,33 It is expected that
the spin dephasing in GaN QD is also dominated by the
hyperfine interaction due to the very small SOC in this ma-
terial. Our numerical results using the approach in Ref. 23
show that this is indeed true, e.g., for QD of a=5 nm and
d0=10 nm, T2 induced by the hyperfine interaction is about
5 orders of magnitude shorter than that induced by the SOC
under parallel magnetic field of 0.5 T when T=0 K. As we
are interested in the difference between GaN and GaAs QDs,
we will not further address the spin dephasing in the paper.

In Fig. 2 the QD diameter dependence of the spin relax-
ation is presented under the magnetic field �a� perpendicular
and �b� parallel to the well plane. Both relaxation rates in-
crease with the increase in dot size but with different speeds:
�1�d0

8 and �2�d0
4. As a result, Mechanism I becomes more

important as the size of QD grows. One can see from Fig. 2
that, under the low magnetic field �B=0.5 T� we show here,
Mechanism II plays a very important role, or even dominates
the spin relaxation for all QD whose diameter is smaller than
11 nm.

TABLE I. Parameters used in the calculation.

� 6.095�103 kg /m3  8.5

vst 2.68�103 m /s g 2.06

vsl 6.56�103 m /s � 8.3 eV

e14 4.3�109 V /m m� 0.15m0

A 45 �eV I 3
2

(b)

a (nm)
12108642

(a)

a (nm)

T
−1 1

(s
−1

)

108642

106

104

102

100

10−2

FIG. 1. �Color online� Spin relaxation rate vs the well width a in
the presence of �a� perpendicular and �b� parallel magnetic fields
with B=0.5 T �solid curves� and B=5 T �dotted curves�. In the
calculation, d0=10 nm. Black �dark� curves—exact diagonalization
results; red �light� curves—perturbation results. Curves with
�−T1

−1 induced by the electron-phonon scattering in conjunction
with the SOC; Curves with �−T1

−1 induced by the second-order
process of the hyperfine interaction combined with the electron-
phonon scattering.
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In Figs. 3�a� and 3�b� the spin relaxation rates induced by
the two mechanisms are plotted as functions of the perpen-
dicular and parallel magnetic fields, respectively. In each fig-
ure, the results are shown for both narrow well �a=5 nm�
and relatively wide well �a=10 nm�. It is noticed that the
effect of each mechanism increases with the magnetic field
as predicated by Eqs. �11� and �13�. Then we pay attention to
the relative importance of the two mechanisms. When the
magnetic field is along the z direction, it is seen from Fig. 3
that Mechanism I is dominant when large vertical magnetic
�B�0.5 T� is applied. However, when the magnetic is along
x axis, for small well width �a=5 nm�, Mechanism I is
dominant for large magnetic field. For wider quantum well
�a=10 nm�, Mechanism II dominates the spin relaxation
when B�2.5 T and is comparable to Mechanism I for larger
magnetic field.

We then turn to study how the direction of the applied
magnetic field changes the spin relaxation. In Fig. 4, we
show the spin-relaxation rates as functions of the angle �
between B and the z axis for a fixed magnetic field ampli-

tude. It is seen that these two mechanisms depend on the
direction of the magnetic field quite differently. The spin
relaxation induced by Mechanism I has a maximum when
the magnetic field is along the z direction. With the increase
in �, it decreases gradually and reaches the minimum when
B is in the x-y plane. On the other hand, the spin relaxation
induced by Mechanism II almost keeps unchanged with �.
This can be understood from the perturbation result. As we
can see from Eqs. �11� and �13� that the relaxation rate �1
contains the term of �1+cos2 ��, which has the largest value
for �=0 and the smallest value for �=� /2 for the condition
we considered, while �2 is almost independent of �. Overall,
the changes in the spin-relaxation rates in GaN QD are mild
when the direction of the magnetic field changes for both
mechanisms. This is quite different from that in GaAs QD,
where the spin relaxation induced by Mechanism I with the
perpendicular magnetic field can be several orders of magni-
tude larger than that with the parallel magnetic field.23,34 This
is because in GaAs material, the SOC is usually comparable
or even larger than Zeeman splitting and therefore the mag-
netic field direction changes the eigenenergy remarkably.
Consequently, the difference between the maximum and the
minimum of the spin-relaxation rates induced by Mechanism
I can be several orders of magnitude different when the di-
rection of the magnetic field changes. However, due to the
small SOC in GaN, the energy difference between the lowest
two eigenstates is determined by the Zeeman splitting and
therefore the change in spin relaxation with the magnetic
field direction is much milder.

We further investigate how the spin-relaxation changes
with the temperature. The results are shown in Fig. 5. One
can see that spin relaxations induced by the two mechanisms
both increase with the temperature. For low-temperature re-
gime, the relative importance of each mechanism remains
unchanged. That is, Mechanism I is more important when the
magnetic field is perpendicular to the well, while Mechanism
II usually plays more important role for the parallel magnetic
field. Both are approximately proportional to �2nq�T�+1�
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FIG. 2. Spin relaxation vs the QD diameter d0 in the presence of
�a� perpendicular and �b� parallel magnetic fields at two well
widths: a=5 nm �solid curves� and a=10 nm �dotted curves�. In
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which is consistent with the perturbative results, i.e., Eqs.
�10� and �13�. However, when the temperature rises high
enough �T�10 K�, the spin relaxation induced by Mecha-
nism I increases much quicker than Mechanism II. For both
parallel and perpendicular magnetic fields, Mechanism II
dominates the spin relaxation for low temperature while
Mechanism I has larger contribution for high temperature. In
order to understand the different temperature dependences of
relaxations, we also show the spin-relaxation rates from per-
turbation calculation in the same figure. It is seen that the
perturbation result and the exact diagonalization result of the
spin relaxation due to Mechanism II agree with each other
qualitatively in the temperature regime we study. However,
the spin relaxation of exact diagonalization due to Mecha-
nism I departs from the perturbation prediction in the high-
temperature regime. This indicates that the perturbation
method is no longer reliable for Mechanism I and should not
be used to obtain the spin-relaxation rate under high tem-
perature. This is understandable, because at low-temperature
regime, the electron distribution at the high levels is negli-
gible and only the lowest two Zeeman splitting levels are
involved due to the small SOC. Therefore perturbative
method is accurate enough to study the spin relaxation
caused by Mechanism I. With the increase in temperature,
electron can occupy higher energy levels with larger SOC.
As a result, the perturbation method is no longer adequate to
study the transition rates induced by Mechanism I.

V. CONCLUSION

In conclusion, we have investigated the spin relaxation-
time T1 in cubic GaN QD under different conditions by the
perturbation and exact diagonalization approaches. Two lead-
ing spin-relaxation mechanisms, i.e., the electron-phonon
scattering in conjunction with the SOC and the second-order
process of the hyperfine interaction combined with the
electron-phonon scattering, are considered. We systemati-
cally study how the spin relaxations induced by the two
mechanisms change with the well width a, magnetic field B,
and quantum dot diameter d0, and demonstrate how they are
different from the counter parts in GaAs/InAs quantum dots.
Our results show that, the ratio of these two spin-relaxation
rates is proportional to a−3B2d0

4 in the low-temperature re-
gime when the quantum well constraint is strong enough.
Comparing to GaAs and InAs, the spin relaxation caused by
the second-order process of the hyperfine interaction com-
bined with the electron-phonon scattering plays much more
important role in GaN material due to the small SOC. Only
when the well width a is small enough and/or the magnetic
field B and QD diameter d0 are large enough, the electron-
phonon scattering in conjunction with the SOC may domi-
nate. Furthermore, how the direction of the applied magnetic
field changes the spin relaxation are investigated. The spin
relaxation induced by the electron-phonon scattering in con-
junction with the SOC has a maximum when the magnetic
field is along the z direction and reaches the minimum when
the magnetic field is in the x-y plane. Nevertheless, the spin
relaxation induced by the second-order process of the hyper-
fine interaction combined with the electron-phonon scatter-
ing keeps almost unchanged with the magnetic field direc-
tion. We also discuss the temperature dependence of the spin
relaxation due to the two mechanisms. At high temperatures,
the spin relaxation induced by the electron-phonon scattering
in conjunction with the SOC is always dominant.
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